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need alignment to external schema, assumptions may be inaccurate
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• cityOfHQ(X,Y): many weak co-occurrences of X & Y 
• A relation may be implied by other predicted relations 

• topEmployeeOf → employeeOf 
• cityOfResidence → cityOfDeath (probabilistic!)

• A relation may require context from multiple entities 
(that may not be query entities) 
• X was in Y: school, company, city, state, country? 
• X, president of Y: headOfState, topEmployeeOf
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Challenges
• Needs to accurately learn all correlations amongst: 

• KBP and Freebase relations 
• patterns and relations 
• entity context and relations

• Needs to be scalable, since we will run it over: 
• all documents in the corpus 
• all entities that appear in them 
• all facts from the external KB and TAC RefKB
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• Pick an observed cell,         :
• Update         &      such that         is higher
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• Relation embeddings, w

• Similar embedding for 2 relations denote they are paraphrases

• is married to, spouseOf(X,Y), /person/spouse

• One embedding can be contained by another

• w(topEmployeeOf) ⊂ w(employeeOf)

• topEmployeeOf(X,Y) → employeeOf(X,Y)

• Entity Pair embeddings, v

• similar entity pairs denote similar relations between them

• entity pairs may describe multiple “relations”

• independent foundedBy and employeeOf relations

Latent Embeddings
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own percentage of 
Y

X buy stake in Y

Time, Inc

Amer. Tel. and Comm. 1 1

Volvo

Scania A.B. 1

Campeau

Federated Dept Stores

Apple

HP

Successfully predicts

“Volvo owns percentage of Scania A.B.”


from “Volvo bought a stake in Scania A.B.”
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Implications

X professor at Y X historian at Y

Kevin Boyle

Ohio State 1

R. Freeman

 Harvard 1

Learns asymmetric entailment:

PER historian at UNIV → PER professor at UNIV


but        PER professor at UNIV → PER historian at UNIV

X historian at Y → X professor at Y

(Freeman,Harvard) 
→ 

(Boyle,OhioState)



Experiments

20 years NYTimes

extract entity mentions, perform entity resolution


350k entity pairs, 23k unique relation surface forms

!

Freebase

6k entity pairs resolved with NYTimes pairs


116 relations

[Riedel, Yao, McCallum, Marlin, NAACL 2013]



Relation
Distant


Supervision 
[UMass 2011]

Unsup 
Clustering 

[UMass 2012]

MIML

 > Mintz, 
Hoffmann


[Stanford 2012]

Univ

Schema 

[UMass 2013]

place lived 0.18 0.28 0.1 0.59

work for 0.67 0.64 0.7 0.75

contained by 0.48 0.51 0.54 0.68

author/work 0.5 0.51 0.52 0.61

nationality 0.14 0.4 0.13 0.19

parent comp 0.14 0.25 0.62 0.76

death 0.79 0.79 0.86 0.83
birth 0.78 0.75 0.82 0.83

person parent 0.24 0.27 0.58 0.53
Weighted Average 

(on even more types) 0.48 0.52 0.57 0.69

[Riedel, Yao, McCallum, Marlin, NAACL 2013]



KBP Pipeline



KBP Corpus

Factorie NLP 
!

segmentation, 
tagging, 
parsing, 

mentions, 
coreference

Cross-doc Coreference

Universal Schema 
(Matrix completion)

String-Slot 
Extraction

Aggregation & Filtering

FreebaseKBP RefKB

Output KB

~200,000 documents
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String-Slot Extraction
• Lexicons created from Freebase 

• Religion: /religion 
• Cause of Death: /people/cause_of_death 
• Charges: /base/fight/crime_type 
• Titles: /business/job_title

• Triggers for various slots 
• Date of birth/death: “born”, “died”, “dies” 
• Date founded: “created”, “founded”, “established”

• Use Natty library to extract relative and absolute dates



Matrix for KBP
Text Patterns KBP 

Relations
Freebase 
Relations

KBP Entities KBP Extractions

?

?

?

KBP 
Annotations

Freebase 
AnnotationsOther 

Entities
Cold Start 

Entities Cold Start Extractions ?

330k columns

3 million rows

10 million observed cells
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Provenance
pattern pattern pattern pattern pattern TAC!

relation

Ent1,Ent2 1 1 1 ?

Pick Provenance



KBP 2013 Results



Entity-Based Slots
per:children

cities_of_residence
city_of_birth

city_of_death
countries_of_residence

employee_of
origin

parents
schools_attended

siblings
spouse

state_of_death
state_of_residence

org:city_of_hq
country_of_hq

founded_by
member_of

parents
shareholders

members
state_of_hq
subsidiaries

top_employee
Overall

0.00 10.00 20.00 30.00 40.00 50.00

Precision
Recall
F1



String-Based Slots
per:alt_names

title

charges

date_of_birth

date_of_death

age

cause_of_death

religion

org:alt_names

date_founded

Overall

0 20 40 60 80

Precision Recall F1
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spouse!
!

X’s ex-husband, Y 
- file for divorce from - 

- hubby - 
- accompany by his wife - 

X, Y’s ex-wife 
- photographed with fiancee - 

X, Y’s girlfriend

cityOfResidence!
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 - citizen of - 
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schoolsAttended!
!

 - from his/her days in college at - 
- hockey player for - 
- be graduate of - 

- be junior at - 
- have resign in protest from - 

- lawyer be hire by - 
employee_or_member_of!
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Summary
• Constructing a Unified KB is beneficial

• correlation-based propagation of supervision

• learn implications between patterns & relations

• Universal Schema via Matrix Factorization

• provides an accurate embedding model

• stochastic gradient descent training is scalable

• can be used for predicting new relations
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Future Work
• Use and predict entity types jointly

• use latent representation of entities for types

• incorporate additional resources such as NELL, lexicons

• Incorporate prior-knowledge into the model

• Extend the model to use:

• more freebase facts, features, 

• all of the KBP source corpus

• Better entity linking for both within- and cross-document

• Participate in TAC KBP 2014!



Thank you!


